Epidermal growth factor receptor transcriptionally up-regulates vascular endothelial growth factor expression in human glioblastoma cells via a pathway involving phosphatidylinositol 3'-kinase and distinct from that induced by hypoxia.

نویسندگان

  • A Maity
  • N Pore
  • J Lee
  • D Solomon
  • D M O'Rourke
چکیده

Glioblastomas are highly vascular malignant brain tumors that often overexpress vascular endothelial growth factor (VEGF). They also frequently overexpress epidermal growth factor receptor (EGFR) and contain regions of hypoxia, both conditions that can induce VEGF. We examined VEGF regulation in U87 MG human glioblastoma cells and in U87/T691 cells, a clonal derivative that contains a truncated erbB2/Neu receptor that interferes with EGFR signaling through the formation of nonfunctional heterodimeric receptor complexes. U87/T691 cells contained approximately one-half as much VEGF mRNA as did U87 MG cells under normoxic conditions (21% oxygen). Pharmacological inhibition of EGFR, Ras, or PI(3) kinase, but not MAP kinase, led to a significant decrease in VEGF mRNA levels in U87 MG cells. VEGF promoter activity in transient transfections was decreased by either pharmacological or genetic inhibition of EGFR, Ras, or phosphatidylinositol 3'-kinase [PI(3) kinase]. However, inhibition of PI(3) kinase or EGFR did not completely abolish induction of VEGF mRNA by hypoxia (0.2% oxygen). Likewise, VEGF mRNA expression was induced 3-fold by hypoxia in EGFR-inhibited U87/T691 cells, comparable with the fold induction seen in parental U87 MG cells, although the absolute level of message under hypoxia was higher in U87 MG cells. In transient transfections, a luciferase reporter construct containing a 1.2-kb fragment of the VEGF promoter, lacking the known hypoxic-responsive element (HRE), showed up-regulation after EGF stimulation to the same degree as the full-length, 1.5-kb VEGF promoter construct retaining the HRE. Furthermore, activity of the HRE-deleted, 1.2-kb promoter luciferase reporter was down-regulated by PI(3) kinase inhibition. Therefore, in glioblastoma cells, transcriptional regulation of the VEGF promoter by EGFR appears to involve Ras/PI(3) kinase and to be distinct from signals induced by hypoxia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PTEN mutation and epidermal growth factor receptor activation regulate vascular endothelial growth factor (VEGF) mRNA expression in human glioblastoma cells by transactivating the proximal VEGF promoter.

Our previous work showed that, compared with parental U87MG human glioblastoma cells, vascular endothelial growth factor (VEGF) mRNA levels are decreased in U87/T691, a derivative line in which epidermal growth factor receptor (EGFR) signaling is inhibited by introduction of a truncated p185(Neu) protein (A. Maity et al., Cancer Res., 60: 5879-5886, 2000). The effect of EGFR activation on VEGF ...

متن کامل

Androgens stimulate hypoxia-inducible factor 1 activation via autocrine loop of tyrosine kinase receptor/phosphatidylinositol 3'-kinase/protein kinase B in prostate cancer cells.

PURPOSE Androgen deprivation is implicated in reducing neoangiogenesis in prostate cancer (PCA). Androgens regulate the expression of the vascular endothelial growth factor (VEGF); hypoxia stimulates VEGF expression through the activation of the transcriptional factor, hypoxia-inducible factor 1 (HIF-1). We tested the hypothesis that an effect of androgens on VEGF expression is regulated direct...

متن کامل

Modulation of Hypoxia-inducible Factor 1a Expression by the Epidermal Growth Factor/Phosphatidylinositol 3-Kinase/PTEN/AKT/FRAP Pathway in Human Prostate Cancer Cells: Implications for Tumor Angiogenesis and Therapeutics

Dysregulated signal transduction from receptor tyrosine kinases to phosphatidylinositol 3-kinase (PI3K), AKT (protein kinase B), and its effector FKBP-rapamycin-associated protein (FRAP) occurs via autocrine stimulation or inactivation of the tumor suppressor PTEN in many cancers. Here we demonstrate that in human prostate cancer cells, basal-, growth factor-, and mitogen-induced expression of ...

متن کامل

Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death.

Active Ras and phosphatidylinositol-3-kinase-dependent pathways contribute to the malignant phenotype of glioblastoma multiformes (GBM). Here we show that the Ras inhibitor trans-farnesylthiosalicylic acid (FTS) exhibits profound antioncogenic effects in U87 GBM cells. FTS inhibited active Ras and attenuated Ras signaling to extracellular signal-regulated kinase, phosphatidylinositol-3-kinase, ...

متن کامل

VGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells

Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 60 20  شماره 

صفحات  -

تاریخ انتشار 2000